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Mitochondrial DNA Haplogroups Do Not Play a Role in the Variable
Phenotypic Presentation of the A3243G Mutation
Antonio Torroni,1 Yolanda Campos,2 Chiara Rengo,3,4 Daniele Sellitto,5 Alessandro Achilli,1
Chiara Magri,1 Ornella Semino,1 Alberto Garcı́a,2 Pilar Jara,2 Joaquı́n Arenas,2
and Rosaria Scozzari3
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“12 de Octubre,” Madrid; and 3Dipartimento di Genetica e Biologia Molecolare, Università “La Sapienza,” 4Istituto di Medicina Legale,
Università Cattolica del Sacro Cuore, and 5Istituto di Biologia e Patologia Molecolare del Consiglio Nazionale delle Richerche, Rome

Thirty-five mitochondrial (mt) DNAs from Spain that harbor the mutation A3243G in association with either
MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome or a wide
array of disease phenotypes (ranging from diabetes and deafness to a mixture of chronic progressive external
ophthalmoplegic symptoms and strokelike episodes) were studied by use of high-resolution restriction fragment
length polymorphism analysis and control-region sequencing. A total of 34 different haplotypes were found, in-
dicating that all instances of the A3243G mutation are probably due to independent mutational events. Haplotypes
were distributed into 13 haplogroups whose frequencies were close to those of the general Spanish population.
Moreover, there was no statistically significant difference in haplogroup distribution between patients with MELAS
and those with disease phenotypes other than MELAS. Overall, these data indicate that the A3243G mutation
harbors all the evolutionary features expected from a severely deleterious mtDNA mutation under strong negative
selection, and they reveal that European mtDNA backgrounds do not play a substantial role in modulating the
mutation’s phenotypic expression.

Human mtDNA has a very high rate of sequence evo-
lution (Miyata et al.1982; Wallace et al. 1987). Its mu-
tations are random and have accumulated sequentially
along radiating female lineages, giving rise to a wide
variety of regional haplogroups and local haplotypes
(Wallace 1995; Torroni et al. 1996; Macaulay et al.
1999; Richards et al. 2000; Herrnstadt et al. 2002).
Analyses of these haplotypes and haplogroups have pro-
vided extensive information about the origin and rela-
tionships of modern populations, despite the fact that
mtDNA evolution is not driven solely by drift. Indeed,
selection acts on the fraction of newly occurring mu-
tations that alter functionally important gene products
and play a role in disease (Zeviani et al. 1998; Chinnery
et al. 2000; Wallace 2001). Unfortunately, the demar-
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cation line between neutral and pathogenic mtDNA mu-
tations is very difficult to define and, for many muta-
tions, could also vary depending the mtDNA and nuclear
genotypes on which they happen to occur or with which
they happen to segregate.

Deleterious mtDNA mutations should have very dif-
ferent evolutionary behaviors, depending on the severity
of the disease phenotype, its age at onset (Torroni and
Wallace 1994; De Benedictis et al. 1999), and, in some
extreme cases, the function of the affected cell type or
tissue (Ruiz-Pesini et al. 2000). Thus, we would expect
severely deleterious mutations causing multisystem dis-
orders to be acted on very strongly by selection and to
be rapidly eliminated. Moderately deleterious mutations
that affect mainly one tissue or organ (nonsyndromic)
or mutations whose penetrance is much higher in male
than in female individuals, such as the Leber hereditary
optic neuropathy (LHON) mutations, could undergo
weaker selection and be transmitted through a relatively
large number of generations and, under particular dem-
ographic conditions, diffuse into the population. By con-
trast, mildly deleterious mutations, which may not be
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Table 2

Patients with Phenotypes other than MELAS

PATIENT

CHARACTERISTIC

PATIENT

2 7 10 13 14 15 23 27 30 31 33

Age at biopsy (years) 27 10 38 66 51 34 29 60 20 39 42
Age at onset (years) 12 4 12 30 32 20 10 50 12 24 10
Stroke � � � � � � � � � � �
Seizures � � � � � � � � � � �
Lactic acidosis � � � � � � � � � � �
RRF � � � � � NA � � NA � NA
Focal brain lesions (CT or MRI) � � � NA � NA � � NA NA �
Additional signsa � � � � � � � � � � �
BG calcifications � � � NA � NA � � NA NA �
Hearing loss � � � � � � � � � � �
Diabetes � � � � � � � � � � �
Other symptoms W W C � � � C PR � W C
Ophthalmoparesis � � � � � � � � � � �
Family history � � � � � � � � � � �
Short stature � � � � � � � � � � �
A3243G muscle (%) 96 58 47 50 52 NA 32 53 NA 57 NA
A3243G blood (%) 83 NA NA 10 NA 50 NA NA 34 NA 22
Respiratory chain complex defect I N III NA N NA I N NA I NA
mtDNA haplogroup J H W H H U5 H U5 T H T

NOTE.—A p ataxia; BG p basal ganglia; C p cardiomyopathy; CT p computed tomography; M p my-
oclonus; MRI p magnetic resonance image; NA p not available; PR p pigmentary retinopathy; RRF p
ragged�red fibers; and W p weakness.

a Either recurrent headache and vomiting or dementia or both.

expressed until late in life, do not reduce the reproduc-
tive fitness of the mtDNAs on which they occur; thus,
these mutations may become established in the popu-
lation as polymorphisms.

If this overall scenario is correct, a mildly deleterious
mutation may have arisen thousands of years ago be-
cause of a single mutational event, and such a mutation
may be part of the sequence motif of a regional hap-
logroup. In contrast, moderately deleterious mutations
are expected to occupy a somewhat intermediate posi-
tion, with a majority of independent and recent occur-
rences and with few relatively old (on the order of tens
of generations) founder events, as attested by the sharing
of the same haplotype by families that are only appar-
ently unrelated but belong to the same population or
live in the same geographic area. At the other extreme,
severely deleterious mutations causing multisystem dis-
orders should be the result of very recent mutational
events and are transmitted through very few generations
(and only if heteroplasmic); thus, founder events are not
expected.

The mtDNA mutation A3243G (Goto et al. 1990;
Kobayashi et al. 1990, 1991) of the tRNALeu(UUR) gene
causes a reduced association of mRNA with ribosomes,
possibly the consequence of the tRNALeu(UUR) aminoacyl-
ation defect (Chomyn et al. 2000), and could be clas-
sified as either a severely or a moderately deleterious
mutation. Indeed, it was initially associated with the
MELAS (mitochondrial myopathy, encephalopathy, lac-

tic acidosis, and strokelike episodes) syndrome (MIM
540000), whose clinical features are episodic vomiting,
seizures, and recurrent cerebral insults that resemble
strokes and cause hemiparesis, hemianopsia, or cortical
blindness (Pavlakis et al. 1984; Montagna et al. 1988).
However, it was also later found in patients who lacked
the typical MELAS symptoms but had clinical manifes-
tations ranging from maternally inherited diabetes and
deafness (MIM 520000) (van den Ouweland et al. 1992)
to a mixture of chronic progressive external ophthal-
moplegia symptoms, strokelike episodes, cardiomyop-
athy, and progressive kidney disease (Moraes et al. 1993;
Jean-Francois et al. 1994; van den Ouweland et al. 1999;
Deschauer et al. 2001). Thus, the phenotypic expression
of the A3243G mutation appears to be quite variable,
ranging from mild to severe phenotypes.

Some studies have shown that most of the A3243G
transitions are due to independent mutational events
(Morten et al. 1995; Majamaa et al. 1998). However,
these earlier studies did not completely rule out the pos-
sibility of some local founder events or, more impor-
tantly, the possibility that certain mtDNA haplogroups
could affect the phenotypic expression of this mutation
(Jacobs and Holt 2000). Moreover, a recent study of the
A3243G mutation in Finland showed that the net re-
production rate, the average fertility, and the generation
time of mutation carriers were similar to those of the
general population. Thus, the genetic fitness of A3243G
carriers does not appear to be reduced, and, apparently,
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Figure 1 Reduced median-joining network (Bandelt et al. 1995) of the haplotypes observed among the Spanish mtDNAs harboring the
A3243G mutation. The data were processed by the RM algorithm ( ). A double weight was assigned to RFLP sites 4216q, 7025a, 11718e,r p 2
and 12308g relative to all other sites. The circles represent combined high-resolution RFLP and control-region haplotypes, their areas being
proportional to the frequency. Subjects 5 and 11 were not included, because they lacked complete RFLP data (table 3). Unblackened circles
indicate mtDNAs from subjects with MELAS, and blackened circles indicate mtDNAs from patients with a phenotype other than MELAS.
RFLP mutations are indicated next to the branches, with the arrow pointing in the direction of a site gain. The numbers indicate the nucleotide
at the beginning of the recognition sequence (according to the numbering of the reference sequence by Anderson et al. [1981] and Andrews et
al. [1999]); the letter suffix indicates the enzyme (see table 3). The asterisk indicates the node of haplogroup H, which corresponds to the
reference sequence. Mutations observed in the portion of the control region sequenced in all subjects (16000–00105) are shown on the branches;
they are transitions unless the base change is explicitly indicated. Underlining indicates resolved recurrent mutations, and dashed lines show
links considered implausible on the basis of data published elsewhere. The hypervariable RFLP site 16517e was not considered, nor were indel
events.
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there is no host-level selection in modern populations
(Moilanen and Majamaa 2001).

In recent years, we have identified 35 unrelated Span-
ish subjects who either were affected by MELAS syn-
drome ( ) or had phenotypes other than MELASN p 24
( ) but were positive for the presence of theN p 11
A3243G mutation in the tRNALeu(UUR) gene when
screened by use of the restriction enzyme HaeIII (Cam-
pos et al. 1995, 1996). This has prompted us to initiate
a detailed analysis of their mtDNAs to determine
whether, at the molecular level, the evolutionary features
of the A3243G mutation were indeed those of a severely
deleterious mutation and whether mtDNA backgrounds
play a role in the variable phenotypic presentation of
the mutation. The rationale of this study is the same as
was previously applied to evaluate the common LHON
mutations and which led to the conclusion that the
milder mutations, ND4/11778 and ND6/14484, are
preferentially associated with haplogroup J, whereas the
biochemically more-severe ND1/3460 mutation is ran-
domly distributed on all European haplogroups (Brown
et al. 1997; Torroni et al. 1997).

All 35 individuals harboring the A3243G mutation
were from families that, according to family member
interviews, were maternally unrelated for at least four
generations. Appropriate informed consent was ob-
tained from patients. Genomic DNAs were extracted
from blood and muscle tissue, using standard proce-
dures. Details about the clinical and biochemical profiles
of the 35 subjects are provided in tables 1 and 2.

To determine high-resolution RFLP haplotypes, the
entire mtDNA was amplified using PCR in nine over-
lapping fragments utilizing primer pairs described else-
where (Torroni et al. 1997). Each of the nine PCR
segments was then digested with 14 restriction en-
donucleases (AluI, AvaII, BamHI, DdeI, HaeII, HaeIII,
HhaI, HincII, HinfI, HpaI, MspI, MboI, RsaI, and TaqI).
In addition, all mtDNAs were screened for the presence/
absence of the BstOI site at nucleotide position (np)
13704, the AccI sites at nps 14465 and 15254, the BfaI
site at np 4914, the NlaIII sites at nps 4216 and 4577,
the XbaI site at np 7440, the MseI sites at nps 14766
and 16297, and the MnlI site at np 10871. The poly-
morphisms at nps 12308 and 11719 were also tested;
the first by using a mismatched primer that generates a
HinfI site when the A12308G mutation is present (Tor-
roni et al. 1996) and the second by using a mismatched
primer that generates a HaeIII site when the A11719G
mutation is present (Saillard et al. 2000). The sequencing
of the mtDNA control-region was performed as de-
scribed elsewhere (Torroni et al. 2001) and encompasses
537–825 nt, beginning from np 16000. Thus, in all
cases, it included much more than the entire HVS-I (nps
16024–16383).

High-resolution RFLP analysis and control-region se-

quencing revealed that the Spanish mtDNAs carrying
A3243G fell into 34 different haplotypes (table 3; fig.
1), strongly suggesting 34 independent occurrences of
the mutation. Indeed, even those mtDNAs that were
members of the same haplogroup—and thus could
theoretically harbor the A3243G mutation by descent—
often differed by several mutations in both the coding
and the control regions. Moreover, some of their differ-
ent control-region motifs have been described in the gen-
eral Spanish population (Richards et al. 2000), further
supporting the independence of the mutational events.
Actually, the only two identical mtDNAs (23 and 29)
also harbored a haplotype that is not uncommon in the
general Spanish population, thus raising the possibility
that the mutation could have occurred independently in
these two cases too.

Furthermore, all mtDNAs were found to harbor di-
agnostic sequence motifs that allowed their classification
into haplogroups. The range of observed haplogroups
was extremely wide and included the typically European
haplogroups H, V, J, T, K, U2e, U5, U8b, X, and W,
plus one representative each of the Asian haplogroup
M8 (Yao et al. 2002) and the African haplogroups U6
and L2a (Macaulay et al. 1999; Torroni et al. 2001).
The presence of the last two haplogroups is not unex-
pected, since African mtDNAs are not uncommon in
Iberia, and members of the Asian haplogroup M are
sporadically observed in Europe (Richards et al. 2000).
Haplogroup H mtDNAs were the most represented, and
they encompassed 48.6% of the A3243G subjects. Hap-
logroup H is the most common in all European popu-
lations (except the Saami) and occurs at a particularly
high frequency in the general Spanish population
(45.1%) (Torroni et al. 1999). The other haplogroups
were represented by either one (haplogroups V, K, U6,
U8b, W, M8, and L2a), two (haplogroups J, U2e, U5,
and X), or three (haplogroup T) samples, and their fre-
quencies are very similar to those previously observed
in the Spanish population (Torroni et al. 1999; Richards
et al. 2000). An analogous result was obtained when the
different subsets of the superhaplogroup U (K, U2, U5,
U6, and U8b) were aggregated. The global frequency
was 20.0%, very close to the 17.6% previously reported
in Spanish controls (Torroni et al. 1999), and thus did
not support the possibility of an excess of U mtDNAs
with the A3243G mutation, as has been observed in
Finland (Majamaa et al. 1998).

The comparison of haplogroup distributions in the two
cohorts of patients, those affected by MELAS ( )N p 24
and those affected by other phenotypes ( ), didN p 11
not provide evidence of clustering on specific haplo-
groups. Indeed, the frequencies of haplogroup H were
virtually identical (50.0% vs. 45.5%), and those of
the less frequent haplogroups were not different either
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from each other or from those of the general Spanish
population.

In conclusion, the present molecular survey, performed
on Spanish mtDNAs harboring the A3243G mutation,
points to two general conclusions that can be extended
to wider population contexts. First, virtually all in-
stances of the A3243G mutation, in families that are
maternally unrelated for at least a few generations, are
indeed due to independent mutational events. This find-
ing indicates that, even though the genetic fitness of the
A3243G carriers in some modern populations might not
be reduced (Moilanen and Majamaa 2001), the survival
time of each A3243G mutation is extremely short. This
result is in complete agreement with what would be ex-
pected for a mutation that causes a severe disease phe-
notype and is under strong negative selection. Second,
there is no clustering of this mutation on specific hap-
logroups, indicating that European haplogroups do not
increase or reduce the risk of expressing MELAS or the
other associated disease phenotypes. Again, this per-
fectly fits the expected features of a severely deleterious
mtDNA mutation whose penetrance is very unlikely to
be modulated by mtDNA backgrounds. Therefore, it
appears that the variable phenotypic presentation of the
A3243G mutation can be attributed to only two factors:
its level of heteroplasmy in the different tissues and the
influence of still-unidentified nuclear genes.
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